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Support Vector Machines'

Given observations taken from p known populations
Measure f features for each observation

Construct a method that
1. Places observations into the correct populations

2. Has good generalization ability
Concentrate on two population case
Method will use a linear separating surface

Extensions
— Nonlinear separating surfaces

— Multiple populations



Sample Applications I

Cancer Diagnosis — 569 observations, 30 features
— Categories — malignant and benign tumors

— Features — cell radius, texture, convexity, symmetry

Classification of Gene Expressions — 2467 observations, 79 features
— Categories — proteasome, histone, cytoplasmic ribosomal protein
— Features — gene expression vectors at various times

* diauxic shift, mitosis, sporulation

Income Prediction — 48842 observations, 14 features

— Categories — income < or > $50,000

— Features — age, work class, education, occupation

Forest Cover — 581012 observations, 54 features
— Categories — spruce, ponderosa pine, aspen

— Features — elevation, aspect, slope, soil type

Intrusion Detection — 4898431 observations, 41 features
— Categories — good and “bad” connections

— Features — duration, protocol, bytes sent



Target Application I

e Income prediction using census data

e 60 million observations
— 100% sampling of population of Britain
— 20% sampling of US population
— 1% sampling of world population



Separation Problem I

P, and P_ are two populations

Ay € R™ Xk and A_ € R™2X* measure characteristics
— my and mo — number of samples

— k — number of features measured per sample
— m3 +mz >k
Separate populations with hyperplane: {x | 7w = ~}

ALw > ey
A_w < ey
Normalize
Ajw—ey 2> 1
A w—ey < -1
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Example — separable data'



Misclassification Minimization'

e Let D be a diagonal matrix

1 ifie Py
—1 ifie P_

D;; =
e Separation condition
D(Aw —evy) > 1

e Generally problems are not separable

e Minimize misclassification error

MiNy -,y 3 lyll3

subject to D(Aw —evy)+y > e



Example — nonseparable data'




Linear Support Vector Machine'

e Select one with maximum separation margin
— Gives good generalization

— Tolerant of small errors in data
e Example formulation

. 2 2
MiNy -,y 3 lwllz + 5 llyll;

subject to D(Aw —evy) +y > e

— W — separation margin
2

— ||y||§ — misclassification error

— v — weighting of the goals

e Support vectors — observations with active constraint
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Example — separable data
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Example — nonseparable data
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First Order Conditions'

e Mixed linear complementarity problem
0=w— ATDTu
0=el'DTu
O=vy—p
O<DAw —Devy+y—e L u>0
e Substitute w = ATD?p and y = %p,
0< (%I—I—DAATDT)M—De'y—e 1l wu>0
0=el'DTp

e Contains rank-k update to a positive definite matrix

e Problem has exactly one solution
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General Framework '

e Linear complementarity problem

S+ RRT —BT
B 0

e Characteristics

— m variables

— n constraints and B has full row rank

xr

A

_|_

x>0
A\ free

— Rank-k update to positive semi-definite matrix
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Interior Point Method'

e Apply interior point method to solve
(S+ RRY)x — BTX+c =

Bx =

XZe =

x>0 , =z

e Perturb complementarity conditions

XZe=T

e Track solution as 7 — 0T

e Maintain x >0 and z > 0
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Basic Algorithm (OOQP)I

e Given o € [0,1], (x%, 2%) > 0 and \°

® Define residuals

P
r, = b— Bx®
r. = —X'Z'e+o

e Generate direction

S+ RRT
B
Z’i,

— BT
0
0

—1
0
X’i,
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Direction Generation '

. Eliminate Az

V:i=S+(2")"'X
V + RRY —BT Az r1
B 0 A\ T2

. Substitute

Ax = (V 4+ RR") '(r1 + B"A))

. Solve

W := B(V + RR")"'B"
WAM =1y + B(V + RRT) 'y

. Recover Ax and Az
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Sherman-Morrison-Woodbury Formula'

(V + RRT)_1 =
v—1_— V_lR(I - RTV_lR)_lRTV_1
® Never calculate the m X m matrix

e Only form and factor k X k matrix
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Testing Environment I

e Workstation specifications
— 296 M Hz Ultrasparc
— 768 MB RAM
— 18 GB locally mounted disk

e Data
— 60 million randomly generated observations

— Each observations has 34 features
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Out-of-Core Computation'

Consider a massive support vector machine
— 60 million observations

— 35 features
Total storage consumption of 3.75 — 18 gigabytes

In-core solution not possible

Access data sequentially

Stream from disk using asynchronous 1/0

— Overlap direction calculations with data reads
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Iterations

Results — Iterations
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Semismooth Method '

e Reformulate as a system of equations
e Apply a Newton method to calculate a zero

e Properties
— One solve per iteration

— Implicitly exploits active set information
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Reformulation '

NCP-Functions
¢(a,b) =0 <& 0<a L b>0

Fischer-Burmeister function

dre(a,b) =a+b— Va2 + b2

System of equations

o(xi, Fi(z,y)) ifie{l,...,n}

(I),,;CU =
D7) Gin(@y) i {ntti...n+m)

®(x*) =0 < x* solves complementarity problem
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Basic Algorithm I

®(x) is not differentiable - semismooth

Use semismooth Newton method

— Let Hy, € 0®(z*)

— Calculate direction: d* = —H, '®(x*)
— Update: zFt1 = gk 4 a*d*

o determined by Armijo linesearch on merit function

Y(x) := %@(w)T@(w)

¥(x) is differentiable with V¥ (z*) = HI' ®(z*)
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Semismooth Algorithm I

. Calculate H* € 8gG(z*) and solve the following
system for dF:

H*d* = —G(z*)
If this system either has no solution, or
Vf(®)d" < —pi|d*|P
is not satisfied, let d* = —V f(z*).
. Compute smallest nonnegative integer #* such that
f(@* + 8" d*) < f(a*) + op” Vi(a*)d

. Set xFt1 = x* + 3i"d* k= k + 1, and go to 1.

28



General Convergence Theory'

Let F : R™ — R™ be continuously differentiable. Then,

1. The semismooth algorithm applied to ®gp is
well-defined.

2. If {wk} is a sequence generated by the semismooth
algorithm applied to ®rg, then any accumulation
point of {a:’“} is a stationary point for

in W
@)

3. If £* is one such accumulation point for which x* is a
strongly R-regular solution to the complementarity
problem, then {3:"“} — ax* at a Q-superlinear rate. If in
addition, F’ is a locally Lipschitz continuous function
at £*, then the rate of convergence is Q-quadratic.
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LSVM Specific Semismooth Theory'

Let {(uk, 'yk’)} be a sequence generated by the semismooth
algorithm applied to the following complementarity

problem:

0< (LI 4+ DAATDT)p—Dey—e L p>0
0=el'DTu

Then {(p*,~v*)} converges to the unique solution (p*,~v*)
and the rate of convergence is Q-quadratic.
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Direction Properties I

o IpP(z*) C {Da + DbF’(azk)} for appropriate D,, Dy

e In particular
1. Dy, > 0
2. D, > 0
3. Do+ Dy >0

® (Dy)i,; = 0 for most observations near solution

— Reduction in work during direction calculation
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Direction Calculation '

e Solve the following linear system at each iteration

(Da + Dy (21 + DAATD")) Ap — DyDeAry =
GTDTA[,I, —

e Use block elimination to solve for (Au, A7)

y = [Da+ Dy (LI +DAATDT)]" " DyDe

z  i= [Do+ Dy (LI4+ DAATDT)] ¢!
r?2—eT DT,

Ay = eT DTy

Ap = yAvy+ =z

e Sherman-Morrison-Woodbury formula
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Iterations

Results — Iterations
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Comparison I

e Interior-Point Method
+ Solves many different formulations
+ Takes few iterations
— T'wo solves per iteration

— Always uses all variables

e Semismooth Method
+ Implicitly uses an active set
+ Takes few iterations
+ One solve per iteration

— Restricted to positive definite formulations
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Future Directions '

e Public release of codes
— Nonlinear kernels
— Multiple category problems

— Parallel implementation

e Applications
— Solver selection using NEOS data
— Design of protein folding potentials

— Genomics and proteomics

e Ability to solve humongous problems
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